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  A BSTRACT  
 Statistical inference involves taking the results of models 
and knowledge about probability to make decisions about 
the relationship in question. This commentary explains the 
usefulness of statistical inference to the drug development 
process, as well as some common pitfalls. It also examines 
reasons why statistical inference does not seem to be fully 
integrated into pharmacometric modeling. An example is 
shown that demonstrates the inferential advantages of mech-
anistic models. Both statisticians and pharmacometricians 
ought to take note of these advantages and integrate their 
efforts in order to maximize the decision-making potential 
of clinical research.  
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   INTRODUCTION 
 I have worked several years attempting to make statistics, 
both as a tool and a profession, a more integrated partner 
in clinical pharmacology research. Lewis Sheiner spent 
an illustrious career making clinical pharmacology a more 
quantitative science. Although different goals, there is enough 
similarity in them that Lewis and I would often discuss at 
meetings quantitative issues related to clinical pharmacol-
ogy. The last time that I saw Lewis was at the 2004 annual 
American Society of Clinical Pharmacology and Therapeu-
tics (ASCPT) meeting in Miami. I was expressing some dis-
satisfaction with the progress we had made and Lewis told 
me, basically, that he was passing on the torch to people like 
me to push forward the quantifi cation of clinical pharmacol-
ogy science. With his passing just a few months later, I was 
left with both an eerie feeling and awesome responsibility.  

  THE ISSUE 
 Clinical pharmacology is a quantitative discipline. First, it 
is a fi eld that generates data. Any fi eld where one collects 
data in order to understand the way things work is quantita-

tive in nature. Yet, to add to this, it is rich in examples of 
being able to describe relationships through the use of math-
ematical models. This special issue alone presents many 
examples of describing relationships with rather complex 
nonlinear models. 
 Statistics is the science of quantifi cation. Modern statistical 
science has its roots going back to the 17th century, but it 
really began its heyday at the turn of the 20th century. 1  
Because of the lack of computing power many of the early 
problems were solved using linear models. The mathematics 
for developing parameter estimates under a linear model is 
relatively easy. Even though sometimes the use of linear 
models was a crude approximation of the truth, they allowed 
for insight, which up to that point was not possible. If the 
problem was suffi ciently nonlinear to make the use of a lin-
ear relationship suspect, one could often answer important 
questions by not assuming any prespecifi ed relationship 
between the dependent and independent variable by using 
analysis of variance (ANOVA) techniques, which are mathe-
matically in the class of linear models. Statisticians, however, 
played an essential role in developing software that could 
examine nonlinear models. Yet, in practice, the default is 
often linear models (linear regression or ANOVA techniques). 
The question is why? Possibly part of the answer is due to the 
mathematical simplicity and elegance of linear models as 
well as to lack of training using more advanced statistical 
analysis methods. There is also probably a component of reli-
ance on what has worked in the past. But probably the most 
compelling reason is that to use a nonlinear model, it must be 
fi rst specifi ed. Of course, one could always look at one ’ s data 
and try to empirically specify a nonlinear model that appears 
to fi t the data well. Although still in the mathematical class of 
linear models, the use of a quadratic term in a linear regres-
sion is one such way this is done. Yet, if there were some 
sound scientifi c principle that was driving the nonlinear rela-
tionship, it seems obvious that this would be preferred to any 
empirical relationship. Thus, to specify a mechanistically 
driven nonlinear model one must have an understanding of 
the scientifi c mechanisms that are driving the nonlinearity. 
 Paradoxically, the strength of statistics is also its weakness. 
Any science that collects and analyzes data uses statistics to 
understand the relationships between variables. Unfortu-
nately, it would be impossible for organizations that train 
statisticians to also give them the scientifi c training neces-
sary to apply nonlinear models to all of the disciplines that 
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use statistics. Yet, the importance of statistics does not rely 
on being able to model data. Its importance comes from 
being able to take the results of models and knowledge 
about probability to make decisions about the relationship 
in question. Let ’ s call this statistical inference. 
 Pharmacometrics is a relatively new discipline. It is made up 
mostly of individuals trained in pharmacokinetics, although 
there are successful statisticians who call themselves phar-
macometricians as well. Anyone who has looked at a con-
centration-time plot (the basic plot of pharmacokinetics) 
recognizes immediately that pharmacokinetic relationships 
are nonlinear. Through the use of polyexponential equations, 
concentration data can be modeled quite well over time. 
Thus, the pharmacometrician quite naturally sees the nonlin-
earity of biological process. Immediately then the pharma-
cometrician also sees the nonlinearity associated with drug 
response. Through the use of similar techniques used in 
describing the nonlinear relationship of pharmacokinetics, 
they are able to develop models that describe the nonlinear 
relationships associated with pharmacodynamic response. 
Unfortunately, statistical inference is not then always pur-
sued. Thus, a good description of the relationship has been 
developed, but decision making, rather than being probabil-
ity-based, is often left to gut instinct. The question is why? 
First, the typical pharmacometrician is not trained in proba-
bility. Thus, there may be a certain amount of ignorance of 
the usefulness of statistical inference. In addition, it must be 
recognized that nonstatisticians and statisticians alike so 
often misinterpret statistical inference that there are many 
examples of it not providing insight but instead providing 
nonsense. Much of this revolves around the general belief 
that a  P  value less than .05 implies that an effect is present, 
whereas a  P  value greater than .05 means that no effect is 
present. Under some circumstances, this sort of logic can be 
useful, but without understanding the basic meaning of a  P 
 value one can fi nd themselves making illogical decisions. 
 The concept of a  P  value is relatively simple, but often mis-
understood. First, defi ne the null hypothesis, ie,  �  t   �   �  p  = 0, 
as the hypothesis of no difference in means between groups. 
This is usually what one wants to prove is false. After one 
has one ’ s data, the following thought process takes place: (1) 
The differences between the means,        x�      t    �      x  �    p      in this experiment 
is  � . (2) For sake of argument, assume that  �  t   �   �  p  = 0. (3) 
With this assumption, how likely would it be that an experi-
ment would produce an          x  �    t    -      x  �    p       ³   � . (4) If this chance were 
relatively small, one would conclude that it was unlikely that 
the null-hypothesis were true. The reliance of .05 as  “ statisti-
cally signifi cant ”  can cause many problems. 2  ,  3  One of those 
problems involves the following. First, one may have too lit-
tle data to disprove the null hypoth esis at this signifi cance 
level. For instance, it may be that given one ’ s data and the 
situation at hand that a  P  value = .2 would be suffi ciently 
small for one to conclude that the null-hypothesis is unrea-

sonable. On the other hand, in a data-rich environment one 
may prefer that before concluding that the null hypothesis is 
unreasonable, the  P  value be less than .005. One ’ s decision-
making process is dependent upon things like the importance 
of making the right decision. 
 With standard statistical models it is common to generate 
many  P  values for the same response. For instance, in a 
repeated measures design with 6 doses (1 being placebo) 
and each patient is assessed 10 times over some period of 
time, one has 50 comparisons to placebo. If all 50 null 
hypotheses were true, it would obviously be very likely that 
some  P  values would be less than .05; an effect termed mul-
tiplicity. 4  Thus, if doing this sort of analysis, one would 
expect to see some sort of pattern in order to form the belief 
that something was really happening. Clever modeling, 
however, can alleviate this problem of multiplicity. If one 
understood mechanistically both the relationship over time 
and the relationship with dose, very likely one could reduce 
the problem to whether 1 parameter is different from 0. 
 The  P  value in statistics is probably over-used in statistical 
inference and says nothing about the magnitude of the dif-
ference between treatments. In other words, a  P  value of 
.0001 does not imply that the magnitude of difference 
between treatments is larger than when the  P  value is .01. 
Another classical tool is the confi dence interval (CI) 
approach, which is advocated by many medical journals to 
replace the  P  value approach, because the former does 
assess the magnitude and precision of the difference between 
treatments. Suppose one could run an experiment over and 
over again. A 95% CI is generated in such a way that for 95 
out of 100 experiments, the CI would contain the true value. 
The unsettling fact is that a CI will not contain the true value 
5 out of 100 times. When one carries out the experiment, 
one does not know whether one ’ s CI contains the truth or 
not. All one knows is that there was a 95% chance that it 
would. As with the  P  value, the level of a CI should be 
dependent upon the situation. Once this level is chosen, it is 
practical to think of the resulting CI as where the truth lies, 
even though this in not precisely what a CI means. By using 
both a CI and a  P  value one has a more robust means of 
doing statistical inference. It is usually not the goal to be 
different from placebo, but to be clinically different from 
placebo. Suppose a 10-unit difference from placebo was 
deemed to be clinically useful. If the lower limit of the CI 
was greater than 10 then one would believe strongly that 
this was a clinically useful treatment. On the other hand, 
suppose that the  P  value for the null hypothesis of no treat-
ment difference was small, but the lower limit of the CI was 
less than 10 and the upper limit was greater than 10. At this 
point one would believe that there is a treatment effect and 
that it could be a clinically important difference. Another 
example would be when the  P  value was small, but the 
upper limit of the CI was less than 10. At this point although 
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there is a statistical difference from placebo, the difference 
is smaller than what would be clinically useful. One last 
example would be when the  P  value was large, but the upper 
limit of the CI was greater than 10. In this case you have not 
proved there is a difference, but you have also not ruled out 
that a clinically useful difference exists. As can be seen, 
using these tools in unison provides a lot more knowledge 
than using either by itself. 
 There is a different type of statistical inference that can be 
done using Bayesian analyses. 5  These inferences overcome 
some of the logical traps of more traditional inference, but 
also have negatives associated with them, as well. I will not 
attempt to introduce this subject, but wanted to mention this 
alternative method to statistical inference. The Bayesian 
tools, if used properly, can quantify decision making to a fur-
ther extent. With that said, the important point is that the use 
of statistical inference, if done correctly, helps  science see a 
clearer picture of what their data are trying to tell them.  

  EXAMPLE 
 To demonstrate the improvement to inference by using 
mechanistic models, a small simple example follows. Data 
were simulated for a hypothetical clinical trial that enrolled 
36 subjects. Each subject was randomly assigned to 1 of 6 
doses (placebo, 1 mg, 5 mg, 10 mg, 40 mg, and 75 mg), so 
that each dose was assigned to 6 subjects. Drug concentra-
tion data were assumed to have a lognormal dis tribution 
with geometric mean of 0.239 ´ dose and coeffi cient of 
variation of 50%. Effect was assumed to have a lognormal 
distribution with coeffi cient of variation of 20% and geo-
metric mean of     10   ´   c  /  (  6   +   c  )    , where c is the concentration. 
 Once the 36 observations were generated, an ANOVA was 
performed with the natural log of the effect as the dependent 
variable and dose as the independent variable. In addition, 
an E max  model was fi t of the following form: 

 All analyses were performed with SAS version 8.02. (SAS 
Institute Inc, Cary, NC). The ANOVA used PROC MIXED. 
All pairwise comparisons to placebo were found using 
LSMEANS option. The E max  model was performed using 
PROC NLMIXED. To examine all pairwise comparisons to 
placebo, fi rst, the geometric mean of concentration was 
found for each dose, then appropriate means and differences 
were found by estimating the effect at these concentrations 
using the ESTIMATE statement in PROC NLMIXED. 6  
  Figure 1  displays the data used for the analyses. A subtle 
effect may be noticeable, but it is certainly less than 
dramatic.     Table 1  shows the pairwise comparisons from the 
ANOVA.   
 It is assumed, in this case, that as the dose increases so does 
the effect. One of the irritating attributes of this display of 
information is that it does not recognize this assumption. 
Thus, we see no consistent pattern of increasing effect with 
increasing dose. In fact, we appear to be detecting a differ-
ence from placebo for the 40-mg dose, but not the 75-mg 
dose. Suppose that the drug needs to possess at least a 40% 
increase for it to be a viable candidate. The results for the 
40-mg dose make this result seem tenable, but the results at 
75 mg seem to show that it is not likely. As can be seen, the 
inference is not straightforward. 
 Use of mechanistic models takes care of this dilemma. First, 
for there to be suffi cient evidence that the drug has an effect, 

  Figure 1.       Scatter plot of simulated effect versus concentration   

 Table 1.        ANOVA Comparisons    

 Geometric Ratio to 95% Confi dence  Precision
Treatment Mean Placebo Interval  P  Value (UCL/LCL)
Placebo  9.89     
1 mg  10.9  1.10  (0.93, 1.30)  .25  1.40
5 mg  9.99  1.01  (0.86, 1.19)  .90  1.40
10 mg  10.7  1.09  (0.92, 1.28)  .33  1.40
40 mg  12.7  1.29  (1.09, 1.52)  .0041  1.40
75 mg  11.3  1.14  (0.97, 1.35)  .11  1.40

Effect =
[

E0 + Emax × concentration

EC50 + concentration

]
exp(ε) (1)

 where  �  is normally distributed with a mean of 0 and 
 variance of  �  2 . 
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the parameter of E max  must be shown to be greater than 0. 
For this example the estimate of E max  was 1.68 (SE = 1.11). 
The  P  value associated with the hypothesis that E max  = 0 is 
.14. There does not appear to be a great amount of evidence 
to suggest that the drug causes an effect.  Table 2  shows the 
pairwise comparisons from the E max  model.    
Notice that the inference about a 40% increase is pretty 
straightforward. It does not look like the drug can deliver a 
40% treatment difference. 
 The last column of each of the 2 tables (UCL/LCL) is a 
measure of precision, which is the upper limit of the confi -
dence interval divided by the lower limit. Notice that 
the mechanistic model is uniformly more precise than the 
inference from ANOVA. In fact, it can be shown that for an 
ANOVA model to have the same degree of precision as the 
E max  model (ratio of 1.32), one would need almost 50% 
more subjects. Thus, not only do mechanistic models pro-
vide more straightforward inference, but they also do it 
more effi ciently. The 50% number comes from the follow-
ing. The standard error for ANOVA is

S E = s
√

1
η1

+ 1
η2

,

where  s  is the square root of the mean square error and  n  i  is 
the sample size of the ith subgroup. Since the sample sizes 
are equal in each group this reduces to 

S E = s
√

2
η .

The width of the 90% confi dence interval 
w = 2 · t0.1,6·(n−1) · S E .  For the ANOVA,     w   =   ln      (  1.4  )    . For 
larger sample sizes, the  t  value changes little. Assuming no 
change in the  t  value, then one could fi nd that the sample 
size needed to produce a width of ln(1.32), n new , relative to 
the sample size that produced a width of ln(1.4), which is 
given by 

 
nnew

nold
=
(

ln(1.4)

ln(1.32)

)2

= 1.47 (2)

 One must recognize how important it is for the mechanistic 
model to be well specifi ed. Potentially a large amount of 

bias is possible for a poorly specifi ed mechanistic model. If 
we want to get these inferential advantages that will drive 
cost savings, then an individual who is accountable for the 
form of the model (the scientist) must exist.  

  CONCLUSION 
 The usefulness of statistical inference has been discussed in 
this paper. The ability to have more powerful inferences 
through the use of proper mechanistic models has also been 
demonstrated. Yet, sadly, even with these facts, the two are 
seldom combined together. If information were cheap, we 
could easily ignore these facts and go on relegating data 
interpretation separately to the pharmacometrician and stat-
istician. Everyone could happily and ignorantly go about 
his or her business. The fact, however, is that information is 
not cheap. It is imperative that appropriate decisions be 
made at the smallest cost possible. Because the pharmaceu-
tical industry is not as lucrative as it once was, we have to 
come up with cheaper ways to develop our molecules. 
Therefore, it is imperative that we get the full use out of our 
mechanistic modeling efforts, which will only be done 
when we break down the barriers that we have set up be -
tween the professions of statistics and pharmacometrics. 
It ’ s time.    
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 Table 2.        Comparisons from E max  Model    

Concentration (Median Geometric Ratio to 95% Confi dence   Precision
for Each Treatment) Mean Placebo Interval  P  Value (UCL/LCL)

0 (Placebo)  10.3     
0.151 (1 mg)  10.4  1.01  (0.99, 1.02)  .51  1.03
0.993 (5 mg)  10.6  1.03  (0.96, 1.11)  .42  1.16
2.81 (10 mg)  11.0  1.06  (0.95, 1.20)  .28  1.26
8.35 (40 mg)  11.4  1.11  (0.98, 1.26)  .11  1.29
19.4 (75 mg)  11.7  1.13  (0.99, 1.30)  .08  1.32


